首页> 外文OA文献 >Radar imaging of stationary indoor targets using joint low-rank and sparsity constraints
【2h】

Radar imaging of stationary indoor targets using joint low-rank and sparsity constraints

机译:使用联合低秩和稀疏约束对固定室内目标进行雷达成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a joint low-rank and sparsity-based model to address the problem of wall-clutter mitigation in compressed through-the-wall radar imaging. The proposed model is motivated by two observations that wall reflections reside in a low-rank subspace, and target signals tend to be sparse. In the proposed approach, the task of segregating target returns from wall reflections is formulated as a joint low-rank and sparsity constrained optimization problem. Here, the low rank constraint is imposed on the wall component and the sparsity constraint is used to model the target component. An iterative soft thresholding algorithm is developed to estimate a low-rank matrix of wall clutter and a sparse matrix of target reflections from a reduced measurement set. Once the wall and target components are estimated, the target signals are used for scene reconstruction. Experimental evaluation was conducted using real radar data. The results show that the proposed model is very effective at removing wall clutter and reconstructing the image of behind-the-wall targets from reduced measurements.
机译:本文介绍了一种基于低秩和稀疏度的联合模型,以解决压缩式穿墙雷达成像中的杂波抑制问题。所提出的模型受到两个观察结果的激励:壁反射位于低秩子空间中,目标信号趋于稀疏。在提出的方法中,将目标反射率与墙反射分离的任务被表述为联合的低秩和稀疏约束优化问题。在此,将低等级约束施加到墙组件上,并使用稀疏约束对目标组件进行建模。开发了一种迭代的软阈值算法,以从减少的测量集中估计墙壁杂波的低秩矩阵和目标反射的稀疏矩阵。一旦估计了墙和目标分量,就将目标信号用于场景重建。使用真实的雷达数据进行了实验评估。结果表明,所提出的模型在消除墙面杂乱和从减少的测量结果重建墙后目标的图像方面非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号